97 research outputs found

    Vitamin D supplementation does not improve human skeletal muscle contractile properties in insufficient young males

    Get PDF
    Vitamin D may be a regulator of skeletal muscle function, although human trials investigating this hypothesis are limited to predominantly elderly populations. We aimed to assess the effect of oral vitamin D3 in healthy young males upon skeletal muscle function

    Muscle glycogen utilisation during Rugby match play: Effects of pre-game carbohydrate

    Get PDF
    Objectives: Although the physical demands of Rugby League (RL) match-play are well-known, the fuel sources supporting energy-production are poorly understood. We therefore assessed muscle glycogen utilisation and plasma metabolite responses to RL match-play after a relatively high (HCHO) or relatively low CHO (LCHO) diet. Design: Sixteen (mean ± SD age; 18 ± 1 years, body-mass; 88 ± 12 kg, height 180 ± 8 cm) professional players completed a RL match after 36-h consuming a non-isocaloric high carbohydrate (n = 8; 6 g kg day−1) or low carbohydrate (n = 8; 3 g kg day−1) diet. Methods: Muscle biopsies and blood samples were obtained pre- and post-match, alongside external and internal loads quantified using Global Positioning System technology and heart rate, respectively. Data were analysed using effects sizes ±90% CI and magnitude-based inferences. Results: Differences in pre-match muscle glycogen between high and low carbohydrate conditions (449 ± 51 and 444 ± 81 mmol kg−1 d.w.) were unclear. High (243 ± 43 mmol kg−1 d.w.) and low carbohydrate groups (298 ± 130 mmol kg−1 d.w.) were most and very likely reduced post-match, respectively. For both groups, differences in pre-match NEFA and glycerol were unclear, with a most likely increase in NEFA and glycerol post-match. NEFA was likely lower in the high compared with low carbohydrate group post-match (0.95 ± 0.39 mmol l−1 and 1.45 ± 0.51 mmol l−1, respectively), whereas differences between the 2 groups for glycerol were unclear (98.1 ± 33.6 mmol l−1 and 123.1 ± 39.6 mmol l−1) in the high and low carbohydrate groups, respectively. Conclusions: Professional RL players can utilise ∼40% of their muscle glycogen during a competitive match regardless of their carbohydrate consumption in the preceding 36-h

    Enduring neurobehavioral effects induced by microbiota depletion during the adolescent period

    Get PDF
    Peer ReviewedThe gut microbiota is an essential regulator of many aspects of host physiology. Disruption of gut microbial communities affects gut-brain communication which ultimately can manifest as changes in brain function and behaviour. Transient changes in gut microbial composition can be induced by various intrinsic and extrinsic factors, however, it is possible that enduring shifts in the microbiota composition can be achieved by perturbation at a timepoint when the gut microbiota has not fully matured or is generally unstable, such as during early life or ageing. In this study, we investigated the effects of 3-week microbiota depletion with antibiotic treatment during the adolescent period and in adulthood. Following a washout period to restore the gut microbiota, behavioural and molecular hallmarks of gut-brain communication were investigated. Our data revealed that transient microbiota depletion had long-lasting effects on microbiota composition and increased anxiety-like behaviour in mice exposed to antibiotic treatment during adolescence but not in adulthood. Similarly, gene expression in the amygdala was more severely affected in mice treated during adolescence. Taken together these data highlight the vulnerability of the gut microbiota during the critical adolescent period and the long-lasting impact manipulations of the microbiota can have on gene expression and behaviour in adulthood.Science Foundation Irelan

    The ATLAS3D project - XXIX : The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images

    Get PDF
    Date of Acceptance: 25/09/2014Galactic archaeology based on star counts is instrumental to reconstruct the past mass assembly of Local Group galaxies. The development of new observing techniques and data reduction, coupled with the use of sensitive large field of view cameras, now allows us to pursue this technique in more distant galaxies exploiting their diffuse low surface brightness (LSB) light. As part of the ATLAS3D project, we have obtained with the MegaCam camera at the Canada-France-Hawaii Telescope extremely deep, multiband images of nearby early-type galaxies (ETGs). We present here a catalogue of 92 galaxies from the ATLAS3D sample, which are located in low- to medium-density environments. The observing strategy and data reduction pipeline, which achieve a gain of several magnitudes in the limiting surface brightness with respect to classical imaging surveys, are presented. The size and depth of the survey are compared to other recent deep imaging projects. The paper highlights the capability of LSB-optimized surveys at detecting new prominent structures that change the apparent morphology of galaxies. The intrinsic limitations of deep imaging observations are also discussed, among those, the contamination of the stellar haloes of galaxies by extended ghost reflections, and the cirrus emission from Galactic dust. The detection and systematic census of fine structures that trace the present and past mass assembly of ETGs are one of the prime goals of the project. We provide specific examples of each type of observed structures - tidal tails, stellar streams and shells - and explain how they were identified and classified. We give an overview of the initial results. The detailed statistical analysis will be presented in future papers.Peer reviewedFinal Accepted Versio

    Observation of a kilogram-scale oscillator near its quantum ground state

    Get PDF
    We introduce a novel cooling technique capable of approaching the quantum ground state of a kilogram-scale system—an interferometric gravitational wave detector. The detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) operate within a factor of 10 of the standard quantum limit (SQL), providing a displacement sensitivity of 10[superscript −18] m in a 100 Hz band centered on 150 Hz. With a new feedback strategy, we dynamically shift the resonant frequency of a 2.7 kg pendulum mode to lie within this optimal band, where its effective temperature falls as low as 1.4 μK, and its occupation number reaches about 200 quanta. This work shows how the exquisite sensitivity necessary to detect gravitational waves can be made available to probe the validity of quantum mechanics on an enormous mass scale.Alfred P. Sloan FoundationUnited States. National Aeronautics and Space AdministrationDavid & Lucile Packard FoundationResearch CorporationNational Science Foundation (U.S.

    Energy intake and expenditure assessed ‘in-season’ in an elite European rugby union squad.

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis in European Journal of Sport Science on 09/06/2015, available online: http://www.tandfonline.com/doi/pdf/10.1080/17461391.2015.1042528Rugby union (RU) is a complex high-intensity intermittent collision sport with emphasis placed on players possessing high lean body mass and low body fat. After an 8 to 12-week pre-season focused on physiological adaptations, emphasis shifts towards competitive performance. However, there are no objective data on the physiological demands or energy intake (EI) and energy expenditure (EE) for elite players during this period. Accordingly, in-season training load using global positioning system and session rating of perceived exertion (sRPE), alongside six-day assessments of EE and EI were measured in 44 elite RU players. Mean weekly distance covered was 7827 ± 954 m and 9572 ± 1233 m with a total mean weekly sRPE of 1776 ± 355 and 1523 ± 434 AU for forwards and backs, respectively. Mean weekly EI was 16.6 ± 1.5 and 14.2 ± 1.2 megajoules (MJ) and EE was 15.9 ± 0.5 and 14 ± 0.5 MJ. Mean carbohydrate (CHO) intake was 3.5 ± 0.8 and 3.4 ± 0.7 g.kg-1 body mass, protein intake was 2.7 ± 0.3 and 2.7 ± 0.5 g.kg-1 body mass, and fat intake was 1.4 ± 0.2 and 1.4 ± 0.3 g.kg-1 body mass. All players who completed the food diary self-selected a 'low' CHO 'high' protein diet during the early part of the week, with CHO intake increasing in the days leading up to a match, resulting in the mean EI matching EE. Based on EE and training load data, the EI and composition seems appropriate, although further research is required to evaluate if this diet is optimal for match day performance

    Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci.

    Get PDF
    BACKGROUND: Genome-wide association studies have identified multiple genetic variants associated with prostate cancer risk which explain a substantial proportion of familial relative risk. These variants can be used to stratify individuals by their risk of prostate cancer. METHODS: We genotyped 25 prostate cancer susceptibility loci in 40,414 individuals and derived a polygenic risk score (PRS). We estimated empirical odds ratios (OR) for prostate cancer associated with different risk strata defined by PRS and derived age-specific absolute risks of developing prostate cancer by PRS stratum and family history. RESULTS: The prostate cancer risk for men in the top 1% of the PRS distribution was 30.6 (95% CI, 16.4-57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI, 3.2-5.5) fold compared with the median risk. The absolute risk of prostate cancer by age of 85 years was 65.8% for a man with family history in the top 1% of the PRS distribution, compared with 3.7% for a man in the bottom 1%. The PRS was only weakly correlated with serum PSA level (correlation = 0.09). CONCLUSIONS: Risk profiling can identify men at substantially increased or reduced risk of prostate cancer. The effect size, measured by OR per unit PRS, was higher in men at younger ages and in men with family history of prostate cancer. Incorporating additional newly identified loci into a PRS should improve the predictive value of risk profiles. IMPACT: We demonstrate that the risk profiling based on SNPs can identify men at substantially increased or reduced risk that could have useful implications for targeted prevention and screening programs.D F. Easton was recipient of the CR-UK grant C1287/A10118. R A. Eeles was recipient of the CR-UK grant C5047/A10692 and B E. Henderson was recipient of the NIH grant 1U19CA148537-01This is the author accepted manuscript. The final version is available via AACR at http://cebp.aacrjournals.org/content/early/2015/04/02/1055-9965.EPI-14-0317.long

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical Covid-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalisation2-4 following SARS-CoV-2 infection. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from critically-ill cases with population controls in order to find underlying disease mechanisms. Here, we use whole genome sequencing in 7,491 critically-ill cases compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical Covid-19. We identify 16 new independent associations, including variants within genes involved in interferon signalling (IL10RB, PLSCR1), leucocyte differentiation (BCL11A), and blood type antigen secretor status (FUT2). Using transcriptome-wide association and colocalisation to infer the effect of gene expression on disease severity, we find evidence implicating multiple genes, including reduced expression of a membrane flippase (ATP11A), and increased mucin expression (MUC1), in critical disease. Mendelian randomisation provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5, CD209) and coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of Covid-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication, or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between critically-ill cases and population controls is highly efficient for detection of therapeutically-relevant mechanisms of disease

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33′25.29′′, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49′25.151′′. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society
    corecore